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ABSTRACT

Image maps of collections of point targets are investigated for
hard-limited synthetic aperture radar application. Some aspects of
hard-limiting, such as image suppression and spurious image genera-
tion, are derived under specialized weak-scatterer assumptions. Also,
the effect of random variations of target phases on synthetic aperture
resolution are studied. Such phase deviations are used to model
random motions of target locations and, as expected, it is found that
they hinder one's ability to resolve the targets. Graphical plots of
some point-target arrangements are presented to illustrate effects of
hard limiting and random phase variations. Numerical calculations
are used to verify the approximate weak-scatterer theory and to study
more general cases such as problems involving more than one strong
target which are not readily solved by analytical means.

A simple averaging procedure is devised which predicts many
aspects of the more accurate numerical results, and the procedure
may perhaps be employed in future investigations of mapping con-
tinuum scattering surfaces rather than point scatterers.
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RESOLUTION OF POINT SCATTERERS BY
HARD-LIMITED SYNTHETIC APERTURE RADAR

INTRODUCTION
rr

As is well-known, synthetic aperture radar is an effective high-resolution-radar tech-
nique for airborne mapping systems [1]. By such means, one can ideally resolve scale
lengths as small as the dimension of the radar antenna [2]. However, higher resolution
systems require increasingly longer processing of doppler phase histories of the return
signal. Thus high-resolution synthetic aperture radar requires storage of a large number of
samples of the return signal. To simplify this problem, the dynamic range of returned
voltage is reduced by hard-limiting [3a] the signal; prior to storage the return signal
Vr(t) arriving at the radar receiver is passed through a high-gain (or hard-limiter) circuit to
obtain the desired hard-limited return signal as

vH(t) h(Vr) = 1, if Vr(t) > 0, (la)

= -1 if Vr(t) < 0. (lb)

As will be shown, vH(t) retains information on the structure of the actual return voltage
vr(t) and can thus be used to resolve the targets. Since vH(t) can assume only two dis-
crete levels, processing vH(t) is obviously much easier than processing v(t).

This report will consider how hard-limiting of the received signal affects the per-
formance of synthetic aperture mapping systems. As will be shown, the mapping process
requires a separation of various frequency components in vH(t). However, the hard-
limiting operation introduces nonlinearities in the process and hence complicates this
analysis. For example the nonlinear aspect of hard-limited signals precludes derivation of
an exact analytical expression for the frequency content of vH(t). Various approximate
analyses have been derived by other authors [3a-6], but due to inherent weak-scatterer
assumptions these derivations cannot treat problems involving more than one strong target.
By modeling the synthetic aperture system on a digital computer, some interesting results
on resolution of target configurations are obtained that cannot be easily analyzed in closed
form. Also approximate expressions of the effects of random phase fluctuations on target
resolution are derived and compared with numerical results.

The next section formulates an appropriate point scatterer model for numerical
analysis of the problem, and results are presented in graphical form in the fourth section.
In the third section, based on these computer results, some approximate analytical
expressions are derived for target resolution in the presence of random phase fluctuations.
This point-scatterer formulation is evidently appropriate for analyzing hard-limited
synthetic aperture mapping of discrete scatterers, such as collections of localized objects
which may be considered as point reflectors. An attempt is made to model the mapping
of surfaces with a continuous distribution of scatterers, such as mapping of oil slicks over
water waves [71, by prescribing a step discontinuity in scattering intensity of an other-
wise uniform collection of point scatterers. As will be discussed, the effect of hard-limiting
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is to cause a spike (or differentiation of the step discontinuity) to appear in the corre-
sponding image map. Although this treatment of continuous scattering surfaces agrees
with experimental results [7], a more deductive treatment of this problem would require
consideration of the average radar-scattering cross section for the ocean surface [8],
rather than a point scatterer formulation. This analysis is a subject for future research
and will be treated in another report.

FORMULATION OF THE MODEL

Description of the Radar System

To arrive at an appropriate mathematical model for the synthetic aperture radar
system, the following operational system is assumed [3b].

v, W 0--- 0HrdFil(terBa --pOsshase Signal Film IOptical mage
Limiter | | at L = Wo | |Detector generator Processor Map

The desired mathematical expression for vS is obtained by extracting the w0 frequency
component from the Fourier representation of vH(t) and, in turn, mixing the resultant
band-limited signal (v0 ) through the phase detector circuit. The analysis of this process
may be derived as follows [3]. Let us represent the received signal in terms of amplitude
and phase quantities A(t) and (t) as

vr(t) =A cos (cot + CF). (2)

As indicated by Eqs. (1), the hard-limiter circuit is assumed to be an instantaneous func-
tion of vH(t). Hence we may write the Fourier representation for vH(t) as

00

vH(t) = hd(v) = e-iCwrH( w) (3)
-00

where, by Eq. (1), H(w) = 2/-ici, Imw > 0. Substituting Eq. (2) into Eq. (3), we find

cii A cs (wt+(') d'

vH(t) = -2 f iei' ost 2I r

-2i ~~mmo t 00 J (w 'A ) dw'
2i 0 -em im Cos m(Wt + ) f CJ 2Ac

where

Em =1,ifm =0,
= 2, if m 0.
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Hence

00

4ITVH(0) = 
m=1

m odd

3 2
C-
r-

(4) "
(-1 )m +1

cos m(ct +).
m

The filtered output v is then found by extracting the m = 1 term from Eq. (4) as

0 ( = - cos (t + ').

The wt phase component is then removed by processing vo(t) in the phase detector circuit
to obtain

v5(t) = cos (. (5)

In subsequent analysis we shall generate resolution maps of radar targets by processing
v,(t) in a manner appropriate to the optical processor.

Derivation of the Received signal

In deriving the returned signal, we picture a discrete set of point targets and assume
that vr(t) in Eq. (2) can be expressed as a superposition of returns from the individual
point scatterers. The coordinate system shown in Fig. 1 will be used in our analysis.

z

AREA ILLUMINATED
BY THE RADAR ANTENNA
AT ANY GIVEN TIME

Fig. 1-Configuration of point targets relative to the
aircraft and radar beam
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In conventional radar, targets are resolved along the range direction r by range-gating the

returned signal. In this report we shall be concerned with processing the returned signal
from targets along the x direction at a fixed range from the aircraft flight path. At any
given time of radar observation, the distance from the radar antenna to say the ath
scatterer is designated by

ra /Ro +(0 xa)2X (6a)

where x is the along-track location of the aircraft, Xa is the along-track location of the
ath scatterer and RO is the minimum distance from PA to the along-track line of targets.

If R 0
2 >> (x - x,) 2, r may be approximated as

(X -Xa)

r. R + 2Ro

V2

R° + (t ta)v2 (6b)
2R0

where v is the aircraft speed along the x direction.

Each scatterer will be assumed to radiate a spherical wave whose field intensity Ea

at point PA is linearly proportional to the incident field intensity at the scatterer as*

E (P ) aEinc,(ra)e
Ec (PA)

where k is the free-space wave number, 0a is a prescribed phase factor, and a. is a

proportionality constant depending on the scattering cross section of the ath scatterer.
For simplicity we neglect the directional antenna gain variations within the illuminated
region and assume

e-ik ra
Einc(r&) Clo

Since e ikra varies more rapidly with ra than does 1/ra, we may thus write Ea(PA) approxi-
mately as

a ei(jt-2kra+00,)Ea, (PA ) 2 ei t-kr+ a)
Ro

*For convenience we use a complex (phasor) notation for variables whenever there is no loss of generality.
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Hence, summing the returns from all scatterers within the antenna beamwidth, we may
write the received voltage in Eq. (2) as

vr(t) = FAaei(@t-2 kra+0a) (7a)

where A a aa/R02. By Eqs. (5) and (2) we thus have

YAa ei( 2kra-0a)
VS= a

Ivr I

where

ama

IvrI2 = VrVr = Au 2 + 2 > AaAa' cos A a) 
a=amin (Aa + a'>

(7b)

(7c)

in which

A la = 2k(ra - ra') + Oc - oa' .

Substituting Eq. (6b) into the above, we find

Omax

v5(t) = a=amin (8)

Ivr I

where

&22= kv2

Ro

and

Since the radar beam illuminates changing sets of scatterers as the aircraft travels along
the x direction, the summation limits amin and max will be allowed to vary with time.
If the scatterers are equally spaced, we require that M amax - min defines a fixed
number of scatterers within the antenna beamwidth.

5
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Generation of the Signal Film and Optical Processing

The signal voltage v(t) of Eq. (8) is in turn recorded as density variations on optical
film in preparation for the optical processor [9]. As the aircraft receives the temporal
development of v(t), a corresponding amplitude-modulated density trace is deposited on
photographic film. This recording of v(t) generates the so-called signal film, which is a
transparency with an oscillatory grating pattern proportional to vs = cos ci. The optical
processor generates a Fresnel diffraction pattern [10] of the signal film grating to produce
an image map of the original surface scatterers. We may describe the Fresnel diffraction
pattern m(x) by the following convolution of vs(t) with the transmittance function h(x)
of an optical cylindrical lens [9, 11]:

T/2

m(r)= f
-T/2

v.(r - r' )h(r')

h(T) = eiQ22

and T is the duration of doppler phase history.*

In our point-scatterer formulation the map function is found by substituting Eq. (8)
into Eq. (9):

amax

m(Tr)a= E

aX=Uminl

e- 2(T-t,)2 fT/2 Aaei[222(T-ta)TA4aI d-'

-T/2 IVr(T - r')I
(10)

where

Vr(T) =

amax

a=amin

If hard-limiting is omitted, we obtain a corresponding map function for linear synthetic
aperture radar:

e-in 2
(T-ta )2

JT/2

-T/2

*In terms of lens optics, T would correspond to the size of the lens aperture.

where

d'r' (9)

amax

.= z
a=amin

Aaei[2 2 (T-ta )T'-tPa ] dr' (11)

6
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Thus, if A.a and hac are constant in T',

[m(T)] linear

amax

a= T m
a=amin

Aae i[Q 2 ( r-t0) 2 +q ] sin 22 (' - t)T 
22(T - ta)T

Hence in linear processing we resolve each point scatterer at = t as [sin 22(r - t)T] /
[2 2 (7 - ta)T]. The width A = 2/Q 2 T of the main lobe for this function may be
interpreted as the minimum resolvable scale size for our radar system. We thus see that
larger T (or longer doppler phase histories in the returned signal) improves the radar
resolution. The value of [m(r')] linear at each target center also increases in proportion
to T.

When Aa or 4, are taken as functions of time, or when hard-limiting is employed,
one cannot readily evaluate m(r) in Eq. (10). In subsequent analysis we shall discuss how
fluctuations of a and nonlinear properties of hard-limiting affect the resolution capabili-
ties of m(r).

EVALUATION OF THE MAP FUNCTION

Effect of Random Phase Fluctuations

If the scatterers are assumed to have equal, but random, phase angles
'Pa = Do, a = i, 2, ..., Eq. (7b) then shows that IJrI is independent of (1)0. Since 4' is
assumed to be a stochastic variable, we may interpret the concomitant stochastic map
function by ensemble-averaging Eq. (10). We may thus write the ensemble average of the
random function mh(T) in Eq. (10) approximately as*

< m(T) > = E ei Q2(r-tn)2
a

T/2 A i2Q2(Tta)' >d

I < ej( ° > Td
-T/2 |Vr(T - T 

If < e 0 > is independent of T, we may rewrite the above as

< m(T)> = <e'i' > e-i22(T-ta)2
a

T/2 Ae i2Q 2(T-ta)' l

f dr'
-T/2 Itv,(r(-T ') I

-I < eO >1 [m(T)] 't'a=O . (12a)

*The tilde will be used whenever m(t) has a random component, and < > will denote the associated
ensemble average.

7
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Thus the effect of random phase fluctuations is to reduce the deterministic map function
m(-r)Iqa=0 by the factor 1< e-i'1)0 >j. By the ergodic hypothesis we may evaluate this
factor as

< e i4° > =f ei'lOP(oo) de)po

where A is the maximum excursion of clP0 and P(QDO) is the probability density function
for FP0. If %io is uniformly distributed in the interval (-A, A), we have P(QI'0 ) = 1/2A and

< eiZ > = ei4FOd4P =sin A
2A jef

Thus Eq. (12a) becomes

< (T) > = A m(T) 4a=0. (12b)

Eq. (12b) shows that increasing phase excursions A will reduce the intensity of
< m(T) > = 0. Specifically, in a completely random situation with A = 7r, we find that
< mi(r) > = 0. This condition illustrates that it is not possible to resolve scatterers with
large phase fluctuations.

Having thus obtained a measure of the effect of random phase fluctuations on
resolution, we must now evaluate m(,r)Ia= 0 by considering hard-limiting aspects of the
problem.

Resolution of Weak Targets in the Presence of a Strong Target

If we assume that one scatterer, say a = 1, is much stronger than the other scatterers,
that is, AI >> A, a = 2, 3, . ., then Eq. (7c) may be expressed as

jvr(T) -zA 1 1 + 2 E cos [2 2 (T1 -Ta)(Tl + T - 2T) + q) - >a]
a>11

Hence

Vr(Tl LAu cos [2 2(71 - a)(T1 + T - 27) + C - Dc,}Al1 A

8
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Thus Eq. (10) becomes

e-i2 2 (T-Ta )2

a

f T/2

-T/2

+ c-P,- a'I} ei(2Q2 (T-ra)r'4a]

This may be expressed as

A1 1 - Cos [2 2(T1 - a')(Tr + Ta - 2r + 2r')
a'>i

dr-'

T/2 d-[ [2Q2(T-rC,)T -¢a,,]
Tf /2

-T/2

_1 A a 2 a'-2T(Tl -iaa'+ 2iS227-(T-a+Ta'-Ti)
2 a'>1 A 1

e i -T -2T(T1 Ta')] e-i(a+)a'- ) 2ig2 T'(T-rai-a'+l )

(13)

T/2 _

I di-' [ l E
-T/2 a>1

T/2

2 Ala>1

dTle-iae2ij2(T-Ta)T

AaAa -Q2[(-a
A2a'>l

(14)

9 :2-1

I-

-r
rr

t

m(r) = _au e-iQ2(_-T_)2

1 a

a '>1 

or

e ) ( a ) 2 e-i(Dl eW22(7-- 1 )T

1 

a

T/2

-T/2

d7-'e-i(4)a-(DU,+4)')e 2jg22(T-Ta+TaI-,rl )T'
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AaAa -i&22 [(T-Ta) 2 +(T-Ta) 2 _(T T )2]

A2
I

(14) Continued.

To interpret this equation, we must consider specific cases of scatterer spacing and
phase functions 'a. Assuming random phase fluctuations as in Eq. (12a) (the random
variable a is uniformly distributed in the interval from - A. to A), we may ensemble-
average Eq. (14) to obtain

< n(r) > = ml () + m2 (T) + m3 (T) + m4 (T) I, (15)

where
sin Ii

ml TF1 -

m2 = T E
a>1

1 - -
2

Au
- FAl

1
M3 - T Y.E

a a'>i
I-a

m4= 2 -T E E
a>1 a'>1

y i(A ) e

sin pa e HalT

a Pa

AAa' Qa -sin [a
2 VAl 1

AaAa'
2

Al

sin a -iQ2 [(rT,-) 2 +(7-Ta')2 -(T-Tl )2]
Pa

in which

Fe = <e~'a> G -= <

Ha = 22T(T Ta) a = 22T(T -a - r + a), ta = Q2 T(T-Ta + 71 -Ta').

By Eq. (15) we may associate target images of the map function with certain properties
of synthetic aperture radar. We see that the first contribution m1 (T) will peak at
,ul = 0 (or at the position of the first scatterer T = ri), whence m(r) represents the map
resolution of the first scatterer. Due to hard-limiting, we find that other scatterers enter
into the term (1/2)Za>l(Aa/Al) 2 and hence cause a reduction in the linearized value of
m1 (). The m2 (7) factor is seen to peak at pa = 0, corresponding to = 

Ta. Hence
m2(i-) represents the map resolution of weaker targets (a = 2, 3, . . .), other than a = 1.
However, the amplitude of m2 (T) at ,u2 = 0 is reduced to half of its correct value obtained

1 

a>1

T/2

xf

-T12

10

-i(4)a+4)aI-,Dl) 2g22(TTa-Ta'+7'l)dr'e e
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when linear processing is employed. This fact may be deduced by comparing m(T) in Eq.
(11) with m + m2 in Eq. (15). Thus in hard-limited systems the weak-scatterer ampli-
tudes will appear to be reduced by a factor of 2. Mathematically this reduction is due to _
contributions from nonlinear interaction terms in Eq. (13). As a result of these inter-
actions false scatterers are created on the image map at locations which coincide with the
true scattering centers. By superposing these false scatterers (which turn out to have
negative amplitudes) with the true scatterer amplitudes, we arrive at a reduced overall
amplitude at the image map. Also, this process is manifest in reduction of the strong
scatterer, except that its effect is not as great when only a few weak scatterers are
present (implying that (I2)>il(AaIAl) 2 << 1.

By inspecting the m3 and m 4 factors, we find that they produce additional images at
Pa = 0 = a, corresponding to

T = Ta -T + Tl-TV, when va = 0, (16a)

T = T + Ta - T1 =T when t = 0.

If the set of position variables T, = 1, 2, . . . are not integrally related, we find that
TV and T will not necessarily coincide with the positions, Ta of the true scatterers. Thus
m3 and m4 can produce false images at positions other than the scatterer locations, re-
sulting in possible errors in detection. With exception of the a = 1 term in M3, these
errors are of second order in weak-scatterer amplitudes and may be neglected relative to
the true images. When the scatterers are equally spaced, the Ta are then integrally related
and Eqs. (16) show that the false images fall at the true-image positions. Hence in this
case false images would not be observed; only a small change in true-scatterer amplitudes
would occur. These conclusions hold for weak scatterers a = 2, 3, etc. such that
Aa << A. As will be shown in the section on computer results, multiple strong scat-
terers of comparable amplitudes can produce noticeable false images at locations unrelated
to Eqs. (16). In this case Eq. (12a) must be evaluated by use of irregular expansions in
the scatterer amplitudes.

Special Case of Two Targets

Using Eqs. (12b) and (15), we evaluate the map function for two scatterers (a = 1, 2,
such that A1 >> A2 ) as

< m(T) > = I ml(T) + m2(T) + m3(T) + m4 (T) (17)

where
T sin Al sin l1

ml= Ap 1-L 2- *(A2\

\Al)
j e-illT

1 A 2 sin A2 sin b12 Y1M2= - T - e-Z2 T
2 Al A2 2

1 A 2 sin A2 sin Al sin P1 ei&2 2 [2(,rTT )2 _Qr-T-2 )21

(16b)
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1 (A 2 )2/ sin A2 2 sin 2 -iSj 2 [2(TT-r2 )2-(TTr )2]
M4 T ~~~~~~~~e

A2 / 2

in which

1 =g2 2T(7-1), .u2 = 22T(r-7 2 ),

V1 = Q2 T( - 2 + 2), 2 = 22T(r - 212 + 1 )

A 1 , A2 are maximum deviations of the phases d, 2.

By Eq. (17) we see that false images will be created at = 271 - 2 = T1 - (2 - 1) and

T = 2T2 - T1 = 12 + (2 - TI). These images are thus spaced about the true scatterers at
T = rl and T2 by an amount Ar = T2 - 1. The strongest false image is given by m3 as
lying to the left of the a = 1 scatterer, and, if A1 = 0, its magnitude is equal to that of
the a = 2 scatterer. Equation (15) shows that the intensity of the ath scatterer will be
reduced by random phase fluctuations according to (sin Aa)/A.. Thus, if a = 2 is a
fixed scatterer (A2 = 0) and a = 1 is fluctuating with A1 = r, we can obtain a situation
in which a = 2 is visible although the stronger scatterer is invisible. Since m3 depends on
interaction between the a = 1 and a = 2 scatterers, we find that the associated false image
will be reduced by random phase fluctuations according to (sin A1 sin A2 )/A1 A2 . The
false image given by m4 at T = T2 + (2 - T1) is due to the self interaction of A2 and
hence is not affected by randomness in the a = 1 scatterer.

COMPUTER RESULTS

In this section we shall illustrate numerical evaluation of the map function in Eq.
(10). By these numerical evaluations we may verify the approximate results of the section
"Formulation of the Model" and can also treat more general cases which cannot readily be
solved by approximate means. Graphical results will be illustrated for various collections
of scatterers.

Definition of Parameters

With reference to Fig. 2, all relevant parameters of our problem may be defined in
terms of the system configuration in the azimuthal plane. The parameter L designates
the length of scattering surface illuminated by the antenna at any given time. We repre-
sent the scattering surface by a collinear set of point scatterers arranged at a constant
spacing d. We consider a maximum of n different scattering amplitudes Ai(i = 1, 2, . . .,n)
and assume that this pattern repeats itself with period A/v. This periodicity assumption is
imposed for simplicity in resolving scatterers at the extremities of our flight path. The
radar antenna is pictured as moving along the azimuthal line at a constant speed v. At
fixed time intervals AT the radar antenna receives the scattered voltage vr(t) shown in
Eq. (2), and we proceed to process this sampled signal according to Eqs. (5) and (9). Ac-
cordingly, in our numerical algorithm we approximate the integral in Eq. (9) as

N/2

m(T) v3(r - nAr)h(nAT)AT , (18)
n=-N/2

12



where 2

T :.N= -
AT _

and

= mAr,

with

M M M
m= 2' -+1,..-2 2

in which

M = A
UAT

v

L i SCATTERING SURFACE

. A4 .. AN A d A4 * * AN Al A2 A3 A4.* *AN Ale * 

of A am

Fig. 2-Configuration corresponding to the relevant parameters:
v = speed of the aircraft along the azimuthal line
k = 2n/ = free-space wave number of the radar signal

Ro= minimum distance from the aircraft to the azimuthal line being mapped
L- Tv = azimuthal length of the antenna illumination

£Ž2 L-kvL/Ro = highest temporal frequency of the doppler return signal. By the
Nyquist sampling theorem we must sample the radar return signal
at intervals AT < 2(2r/S 2L)

d = spacing between scatterers
N = amax - amin = number of scatterers per antenna beamwidth
A = distance such that A/v is the period of the scattering-amplitude pattern

An= intensity of the nth scatterer
44n= phase of the nth scatterer appearing in Eq. (8)
An= maximum random phase excursions of the nth scatterer per Eq. (12b)

For sufficiently small A we note that Eq. (18) will converge to the desired Eq. (9). This
convergence may be investigated numerically by decreasing A and recomputing Eq. (18)
to check whether a significant change in m(r) occurs. This check was conducted for each
computed result illustrated in this section. As expected, sufficient accuracy was obtained
when Ar satisfied the Nyquist sampling criterion for the function cos 22r, T < T. A
listing of the computer program used to compute v(T) and m(r) is included in Appendix A.

In the following paragraphs we shall describe plots of some evaluations of Eq. (18)
for various amplitudes An, phases 4%, and scatterer spacings d.

NRL REPORT 7566 13
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Single Target Per Antenna Beamwidth

In Fig. 3 we plot m(T) in Eq. (18) for various values A1 of maximum random phase
excursions of 4Dl. A constant amplitude A 1 = 1 was chosen, so that vr of Eq. (7b) is
unity. In this case we may simply evaluate Eq. (12a) by using Eq. (11) for m(T) 14q=0.
We thus find that a single scatterer gives

sin 22(-r - T1)

E22(T - r)T
< (T) > = T

3.0

2.4

_

1.8 -

E.
1.2 -

0.6 F-

TI

(a)

(C)

A4 I I
T

(19)

(b)

(d)
Fig. 3-Numerical evaluation of the map function given by Eq. (10) for

N = max - Xmin = 1, A = 1,
L = d = A = 300, R = 5000, v = 100, k = 2ir, Q 2L/41 = 30, and AT = 3/400:
(a) A1 = 0, (b) A1 = /3, (c) A1 = 2/3, and (d) A = 

By numerically evaluating Eq. (18), we are able to see the effect of A1 on the ensemble
average < e-i;>l >. This experiment verified the ergodic assumption used in deriving
Eq. (2b).

Figure 3a plots m(r) for the deterministic case A1 = 0.* We see that the amplitude
of m(r1 ) corresponds to the assumed value T = 3, and its width corresponds to 2/Q 2T,

*Since our primary concern is to illustrate the amplitude of the map positions at each scatterer center
with as much simplicity as possible, we draw only the main lobes of m(T) at each scatterer center - Ta
and omit drawing that portion of m(r) due to side-lobe variation. Thus only the main lobe of Eq. (19)
can be compared with Fig. 3. This simplified method of presenting the numerical results is also used in
Figs. 4 through 9.

MMWAILU�W���I_
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thus verifying the equivalence of Eqs. (18) and (19). In Figs. 3b through 3d we plot
m(r) for A = r/3, 2/3, and r respectively. These figures illustrate how the level of
m(T) decreases according to (sin Al)/Al as A1 is increased. In a completely random case
(A = r) we find that Eq. (18) reduces to a low-amplitude rapidly fluctuating function in
such a manner that we are no longer able to resolve the scatterer. The results agree very --

well with Eq. (12b) at T = 1 . At other points T T1, we find that the level of rapid
fluctuations increases with Al, in accord with the increased randomness in target position.
Since these rapid fluctuations are sensitive to the random sequence of values chosen for
4Dj, we note that their ensemble average would be zero.

We may interpret randomness of phase (Il in another manner. By Eq. (8), we find
that a change of 4a is equivalent to a change in (T - a), corresponding (for given T) to a
change in the scatterer position T. Hence a random '>a implies a random fluctuation in
the position of the ath scatterer. Under such changing scatterer positions it is under-
standable that random phase hampers one's ability to resolve the scattering center.

Two Targets Per Antenna Beamwidth

Figure 4 illustrates resolution of two scatterers. To conform with the approximate
treatment used in Eq. (13) we assume A2 = A 1 /4. Figure 4a shows m(T) in the absence
of hard-limiting. To calculate this case, we substitute v = 1 in Eq. (8) and insert the
so-computed v(t) into Eq. (18) to obtain the unlimited (or linearized) map function of
Fig. 4a. In this manner we are able to resolve the target locations unaffected by other
corrupting factors and can thus provide a reference for comparing effects of hard-limiting
and random phase fluctuations. We note that Fig. 4a corresponds to Eq. (11) for
amax - min = 2.

In Fig. 4b we plot Eq. (18) when hard-limiting is employed for the deterministic
case A = 0. We find that the two scatterers are resolved at T = T and 2 according to
Eq. (17). As expected, the relative amplitude of A 2 at T = 2 appears as half of its true
value and, as predicted by m 3 and m 4 in Eq. (15), we also find false images at T = T -
(T2 - Tl) and = T2 + (T2 - T). Figure 4c shows m(T) when not only hard-limiting is
assumed but random phase excursions A1 = A2 = 7r/3 are assumed. As predicted by Eq.
(17) the effect of random phase is to reduce the scatterer amplitude at T = T and T2 by
the factor (3/27r) sin (2r/3) and the ghost images are reduced by (3/27r)2 sin 2 (27r/3).
There is also a slight increase of background small-scale fluctuations in m(T) at points
T T and T2 due to randomness in the scatterer positions.

Figure 4d shows m(T) without hard-limiting with A1 = r and A2 = 0. This case
corresponds to a fixed scatterer (a = 2) near a randomly moving strong scatterer (a 1),
and as expected we find that the a = 2 scatterer is mapped as in Fig. 4a but the a = 1
scatterer cannot be resolved; only a low-level random fluctuation is imaged at T = T1. In
Fig. 4e we show m(T) under the same random phase condition, but with hard-limiting
employed. As shown by Eq. (17), we then find that the scatterer resolution at T = T2 is
reduced by half. However the a = 1 scatterer and false scatterers do not appear due to
the fact that A = r. When we also assume randomness in 2 (namely A = 2 = r), we
obtain a completely random case and do not find any discernable image. This is
illustrated in Fig. 4f for the hard-limited case, where only a low-level background
fluctuation is mapped.
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Three Targets Per Antenna Beamwidth

Figure 5 illustrates the effect of hard-limiting in resolution of two weak targets in
the presence of a strong target. The deterministic case Aa = 0, a = 1, 2, 3, is considered.
Figures 5a and 5c show the unlimited m(T) for two different target spacings. The cor-
responding hard-limited m(T) for these two cases is shown in Figs. b and d respectively.
In going from Fig. 5a to Fig. 5b, we see that two symmetrically spaced weak signals pro-
duce a symmetrical arrangement of false images. We note that the relative amplitudes of
A2 and A3 in Fig. b are slightly larger than predicted by m2 in Eq. (15). This enhance-
ment is due to reinforcement by false images which also occur at = 2 and T3. In Fig.
5d we see that an unsymmetrical assortment of scatterers will produce a different dis-
tribution of false images. The largest false image is due to interaction between the two
closest scatterers and occurs analogous to the two-scatterer case of Fig. 4b. All other
false images are seen to be second-order interactions.

3.0

2.4

1.8 -

E
1.2 -

0.6 -

0
T2 TI r 3

(a)

r2 TI

(b)

kk I 1111
r 2 Tj r3 T2 rl r3

(c) (d)
Fig. 5-Map function for three targets at T = T, 2, and r3 with A 1 = 1, A2 = A3 = 0.3,
d = 30, L = A = 300, Ro = 5000, = 100, k = 20ir, 22 L/47 = 30, A = 3/400,
and A1 = A2 = A3 = 0; (a) Unlimited, (b) Hard-limited, (c) Unlimited, and (d) Hard-limited

S lo -
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Figure 6 illustrates the effect of random phase fluctuations, by plotting the resolu-
tion of the cases in Figs. 5c and 5d for nonzero Aa. In Fig. 6a we plot the unlimited
m(r) of Fig. 5c, except that we now assume A3 = 7r. As expected, complete randomness
of the a = 3 scatterer prevents resolution of its scattering center. Figure 6b shows the
hard-limited map for the same case. Again we see that the a = 3 scatterer cannot be re-
solved. The only false image appearing is due to the interaction of the deterministic
a = 1 and a = 2 scatterers. The other false images of Fig. d do not appear, since they
involve interactions among random scatterers and hence are not seen in the averaging
process. Also, the relative level of the a = 2 scatterer is half of its true level. Thus,
except for the low-level random background fluctuations for T * T1 , T2, or 3, this three-
scatterer problem yields a map which is very similar to that of the two-scatterer problem.
Figures 6c and 6d show m(r) for the unlimited and hard-limited cases respectively when
Al = A2 = 7r and A3 = 0. In this case, we can resolve only the a = 3 scatterer. Although
Fig. 6d does not have false images, we nevertheless observe its hard-limited feature in that
the amplitude of the a = 3 scatterer is only half of its true value. Figures 6e and 6f plot
< m(r) > for the unlimited and hard-limited cases respectively, assuming Aa = r, a =
1, 2, 3. We find that this condition causes an unresolvable situation, in that m(T) has no
apparent features at r = Ta, a = 1, 2, 3. The random background fluctuations which occur
may exhibit peaks which could be mistaken as scatterer images; however we expect that
the ensemble average of these fluctuations would be zero.

The results of Fig. 6 are seen to be in close agreement with Eq. (15), since this
equation correctly predicts suppression of weak targets and false image generation due to
nonlinear interactions, including effects due to random phase variations. However, as the
number of scatterers increases, it becomes more difficult to interpret Eq. (15) without the
aid of a computer. Subsequent paragraphs describe some numerical experiments involving
larger collections of scatterers.

Ten Targets Per Antenna Beamwidth

To show effects of hard-limiting, m(r) is plotted in Fig. 7 for various arrangements
of deterministic scatterers. Figures 7a and 7b show m(T) for ten equally spaced and
equal-amplitude scatterers for the unlimited and hard-limited cases respectively. In com-
paring these two cases, we find that the hard-limited map resolves the individual scat-
terers quite well but with smaller intensity than those of the unlimited map. In addition
hard-limiting causes false images to appear midway between the scatterers. Equation (15)
cannot be expected to describe this example, since we do not satisfy the weak-scatterer
assumption; hence we prefer to interpret this case on the basis of the computed result.

Figures 7c and 7d plot a case which is describable by Eq. (15). Figure 7c plots the
unlimited map function to show the basic arrangement of scatterers. The corresponding
hard-limited case is shown in Fig. 7d. In this case we note that false images are no longer
present between the scatterers. As predicted by ml(r) in Eq. (15), an effect of non-
linearities in this case is to reduce the amplitude of the strong target, thus resulting in a
higher amplitude for the weak targets relative to the strong target. This enhanced relative
amplitude for weak scatterers causes the hard-limited map function to appear similar to
the unlimited map function. For this reason, a sufficiently high number of weak scat-
terers is said to linearize a hard-limited map system [4, 12]. In this case, target suppres-
sion of weak scatterers will not occur, and one can obtain a fairly accurate measure of

18
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target strength. By Eq. (15), we note that such a "linearization" can be expected when
the term Ta>I(Aa/Ai) 2 in m1 is sufficiently large. (Since we require Aa << A1 ,
a = 2, 3, .. ., it follows that a large number of targets are required.)

To show how hard-limiting may affect one's ability to measure relative target
strengths, Figs. 7e and 7f show a case of ten scatterers with linearly decreasing amplitudes.
The unlimited case is shown in Fig. 7e. In the hard-limited map of Fig. 7f we observe a
peculiar modulation which enhances relative scatterer amplitudes for certain portions of
m(r) and suppresses them in other regions. The enhancement occurs in the region of
strong scatterers, indicating that this effect is due to interaction among strong scatterers.
The suppression occurs in the region of weaker scatterers, as is customary in hard-limited
signals [4].

Figure 8 plots the resolution of ten scatterers with random phase fluctuations.
Figure 8a shows the unlimited m(T) when A6 = ir, and a = 0, a # 6. As expected, we
find that the a = 6 scatterer cannot be resolved. The hard-limited version is shown in
Fig. 8b, where we see some interesting suppression effects of adjacent scatterers due to a
single random scatterer. False images are found midway between the targets but, due to
the a = 6 random target, they appear with slightly varying strengths. In Figs. 8c and 8d
we assume A = r, a * 6 or 7, and A6 = 7 = 0. To establish a reference map for com-
parison, Fig. c shows the unlimited m(T). The hard-limited m(T) of Fig. d shows a very
similar resolution of the fixed (a = 6, 7) scatterers, with a fairly accurate display of the
true relative scatterer strengths. Thus we again find an effective linearization of hard-
limited maps of many scatterers with random phase variations. We cannot use Eq. (15) to
explain this "linearization," since the A, a 1, of Figs. c and d do not satisfy the
weak scatterer assumption; so that we must heuristically attribute this phenomena to
many-scatter and random-phase effects. To show the dependence of this "linearization"
on the amplitude of A, a 1, Figs. e and f show m(T) for decreasing strengths of the
background (a =A 1) scatterers. As expected, we see by Figs. 8d, 8e, and f that "lineari-
zation" of hard-limited maps requires that the background scatterers be of sufficiently high
strength. This follows since background scatterers cause a reduction of m in Eq. (15)
through the term (1/2)2a>i(Aa/Al)2. Since the ratio m2/m1 increases as m is reduced,
we thus obtain the effective "linearization" phenomena. Thus we can conclude that
"linearization" of hard-limited maps occurs if the background scatterers meet the criterion.
Figure f shows a case in which a>i(Aa/Al)2 < 1. In this case the background scat-
terers have little effect on "linearization," and m(T) begins to show features of hard-
limiting such as false images and image suppression.

Resolving Uniform Arrangements of Many Targets

To simulate some conditions which are encountered in mapping terrain and ocean
surface [7], a computer run involving 60 scatterers with a step discontinuity in scattering
amplitudes was made. Figure 9a shows the true scatterer arrangement by plotting the
unlimited map function.* Of the 60 scatterers, the antenna beamwidth was prescribed to
illuminate ten scatterers at any given instant of observation (with reference to Fig. 2, the
ratio L/A for this case would equal 1/6). The corresponding hard-limited map of this

*For simplicity Fig. 7 shows only the peaks of the main lobes at each scattering center. Thus each of
the 60 vertical lines drawn indicates the amplitude of a scattering center.
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problem is shown on Fig. 9b. As is evident by comparing m(r) away from the dis-
continuity, the relative scatterer intensities cannot be resolved by hard-limited processing. -

Thus we see that the intensity of the weak scatterers in the image plane is equal to that
of the strong scatterers. However near the discontinuous region we begin to distinguish
relative amplitudes of scatterers, and Fig. 9b shows the tendency of m(T) to seek proper
relative levels in such regions.

Figures 9c and 9d plot m(T) for assumed random variation of amplitude and phase
respectively. In Fig. 9c the phase ID, of each scatterer was held constant and the ampli-
tudes An were varied in the random fashion stated in the figure subtitle. Physically this
condition represents fixed point-targets with random scattering cross sections. As we see
from Fig. 9c, the map function for this case is similar to the deterministic case of Fig. 9b.
Thus a fixed succession of targets with a discontinuous change in their scattering cross
sections produce hard-limited maps with a characteristic doublet-type oscillation at the
point of discontinuity. In Fig. 9d the amplitudes A, were held fixed and the phases 4Dn
were selected randomly. As in Figs. 3, 4, 6, and 8 this case implies a random motion of
target positions; hence we cannot resolve the scattering centers. Our inability to resolve
the scatterers is evidenced by the random variation in m(T) of Fig. 9d.

SUMMARY

A study is made of hard-limited synthetic aperture resolution of point targets. We
derive a mathematical representation of our point-scatterer model and synthetic aperture
radar system. The corresponding map function is formulated by match-filtering the hard-
limited return signal via an optical processor. An approximate evaluation is then made of
the map function. In this analysis we include a method of treating random phase varia-
tions of the point targets. The hard-limited aspect of our problem is treated approxi-
mately by assuming that a single strong scatterer is imbedded in a set of much weaker
scatterers. By this method we derive Eq. (15), which isolates causes of image suppression
and false image generation due to hard limiting. As an example, the special case of two
point-targets is considered in detail.

Finally we consider results on numerical evaluation of the map function. This
enables us to treat more general target arrangements which cannot be easily treated by
analytical means. Effects of various target arrangements and random phase variations are
summarized in graphical form, and some interesting properties such as target resolution in
the presence of random variation of background targets and false-image generation due to
nonlinear interactions among targets are discussed. Under certain conditions of background
targets, we show that hard-limited maps are not appreciably different from unlimited (or
linearly processed) maps, in which case the background targets are said to "linearize" the
system. Although such a phenomenon has already been predicted [4, 12], we present
some different situations in which this occurs and give a simplified explanation of its
origin. In an effort to simulate mapping of certain terrain and ocean surfaces, we also
present plots of the map function for a set of targets arranged with a discontinuous change
in their scattering cross sections. The corresponding map function for this case is
characterized by a doublet-type behavior at the point of discontinuity. The computer
program is listed in Appendix A.
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Appendix A

Computer Program to Evaluate v8(T) and m(r)

I FTN LX

PROGPAI-; SUi
RcAL MiN

C TrE D IcNi iO OF CLC4 ShOULD =KL
CO;.PLtX C(8G0),CI.CoG C,0),-Ci (bU),PICP,;CKCP.iDC

C TE Dli;,ENSICN OF NM1,V2, SHOULL) = K.
DlIi'ENSICN DJO)9l;'(ab0)PRC(8bUO)ii,(60)RCi(600)

C TE Di cINiON OF A ShOULD =iN\A
DLIENSiGN AC200)

C KL=LVEN NO. OF LOOKS IN TRAVELLING THE ubSrcRVATICN EION
KL=400
NP=1

C K=NO* OF L OKS WITHIN ONt ANTENNA LEA;i WIDTi

KiNi=KL/NP
NA=10

C NTS SHOULD tDE EVEN
NTS=NA-NP
NTS2=NTS/2
DX=30.

C DLFINITIOk OF AiiPLlTUDES A
DO 3 K=1,NTS

3 A(K)=u.3
A(5)=1.0
NA2=NA/2
SN=NTS
SN1=KL
SN=SN/SN1
VA=160
R0=5000.
KO=62 .8

DTS=DX/VA
DT=SN*DTS
TA2=NA*)TS/2*
DT2=DT*oT
l:R2=J. 5*O*Vh*VA/i<O)
Ai- DA =6.2d31l'D4+/KO
l.'=iR2*jeA*DTS
Tl=6.2831854/W
TR=DT/Ti
APL=DX NA/2s
THETA=ATAiN2 (APLRO)
APL=2.*APL
WL=VA*S iN (TH.TA) /AIDA
TO 1=6 *461854/ UD
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TRD=DT/TD1
PRIjNT 15, i4AKLVAqROAiDA

15 FR;*AT(' CALCULATIlO; 0i- SCATTLklidUG fRO; A SET r*t4t*ISCRETE SCAT
1TERERS ~ITH*I4p*LLOKS9VLLUCITY VA=`L10.3 /* RA*i0= . j*AVELEtiG
2TH =*Elo.3)
PiNibT 16, DTsuTS iTlTl;,PpLT.ILTei ,LTL)1,TRLj

16 Fi<;AT(* TI;.i rTA LOOKS T= L1.33*iitl IsuulkL) lu IRAVEL HE
1 aPAC~iiG LET! LErN SCATTLi-sRS* .1u'.3,*' HIi:-EST FisEG. !: hD PER<IOD Ti
2 OF TtHr SCIiTILLATING SIGNAL=L1O.3,*,*E10.3,*raTIO DT/T1 =E10.3/
3* SYNTHETIC APrkATURE LNUTn=*'-l10.3q* o.AI IBA T-=*E1O.3/* inIGHEST
4DCGPPLEk FREU-=*L1O.3t* DOPPLcR PERiOD TD1=*E1O.3,* RATIO DT/TD1=*
5E10.3)
DO 1 K=1,KL
CK) =(0. .0.)
['"5 =51',*- -1 )+

DO 2 =N51t9S2
AN'GL[=isAisE ( -1 )-O. 5
Pt-1( (K-1 )'-T-1I'-DTS+TA2 )**2

IF 11 .GT* TS) 11=1l-;iTS

Pi- SE=o.2l3j4SiaNGL
IF(lI .L.i 6) P-'iS.
IF(II LQ. 5) PSL=0.
P1I= ( -fi<2*PH I +Pi HS ) '*Ci-PLX ( *i . 1.0 )

2 C(K) C(sK)+A(Il)-CcXP(PI)
CN ( K) =C (K)
CK=C (K)
RC (K) =ktAL (CK)
DC=C<*CGiiJG(CK)
D(K)=R AL(DC)
DK=D (K 

1 C(r)=\i(K)/SORT(DK)
DO 4 K =1,i(.i
PhI=(K-i )*DT-TA2

4 C,(K)=CLXP(PI)
DO 5 K=1,KL
CpN=LV,.qo0.

CP;i= (. . O)
DO 19 L=19KM
LK=K+L-1
IF(LK .T. KL) LK=LK-KL
Ci-. =tk ti(j ( L~i) *Ci,.l L )

19 CFNi=Cis.+C(Li)Ctii(L)
i'NiC(K )=CsfiS CCPM'i

27
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5 i;(K)=CALiS(CPN)
PRINT 10

10 FuR ~I(* THE NuLZkiTOR C(K) 15*)
KS= (KL-t-1 )/fA+1
KkS=K3+9
PRIkT i7, (Ci (K) ,K=1,10) , (CiW(i .Kh=KSKU)

17 FOkiRAT(Ž0(1h ,AC(L1.3,ti0. ) iX)/)
PRINT 1 3

13 FCRt'WAT(i' THE SUARi F (K) Ii*)
PIk11T 7, ( D(K) ,K=1 q10) ( (K) K=KSKU)
PRINT 12

12 Fu;iAT(* ThE i IiP FCT1Oi I)
7 FOR i ( 1 ( 1 H -1) Ic/lu ))

CALL PLjT(t KL, ,1)
CALL PLUT ( ,KL 3 )
ENiD
SU B OkLT I E PLOT (i .KL 1 1A)

DI IENSON A(KL) 3LINE4 (121)
INTEGEl LANii;KiLOTSTA~RPA s C ;
L),-TA(N;1 = 3, ) (u LAii'=1ri ) , (vul =(rL . , I =1 1 =1R-1 ) P, oia jjj' ) , C= 1n

1 )
G12D./ 1A

IC=G1
L=0
D0 13 I=1 KL
AA=A ( I )
AA=AbS ( AA)

13 B=ANAX1(AA t )
DO 1 =1,iNA

1 LINE( IL)OT
GO TO (2,i3,4 ,1W.

2 PRINT 100
GO TO 10

3 PRINT 101
GO TO 10

4 PRI iT 102
10 PRINT 105 LINiL

DO 9 J=19KL
D0 12 I=1,NA

12 LINE( I ) =BLANK
LINE( IC) =DOT
I P=G1+G*A (J )/b
LIN ( IP)=STAR

90 PRINT 05,LI NEA(J)
luo FQLiAAT(1H1* F-LOT OF PHASE L(K)*)
lul FJIAT (li-i * PLOT F T ciATCnrL FLTLR RLSPCNSE TO T ESULTANT

1 SI GNAL*)
102 FRi'AT (1Hi1,* PLOT OF APPlNOj FUNCTIUH*)
105 FiAT(1H 121A1 2XoL10.3)

RETURN
END
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